SUMMATIVE ASSESSMENT - III - 2016-2017 MATHEMATICS - PAPER - II (English Medium) PRINCIPLE OF VALUATION

Class : IX

SECTION - I

1. Given the interior angles of a trinalge = $(3x-10), (3x+10)^0, (3x^0)$

Sum of the angles = $(3x-10) + (3x+10) + 3x + 9x = 180^{\circ}$

$$9x = 180^{\circ}$$

$$x = \frac{180^{\circ}}{9} = 20^{\circ}$$

:. The angles are = $[(3 \times 20) - 10], [(3 \times 20) + 10], (3 \times 20)$ = 50⁰, 70⁰, 60⁰

2. i) Points that lies
$$\overline{OY}$$
 on is for $x = 0, y \ge 0$

The point which satisifies the condition is allowed.

ii) Points that lies on
$$\overline{OX}^1$$
 is (x, y) for $x = 0, y \le 0$

The point which satisifies the codnition is allowed.

3. Vertically opposite angles

 $\underline{AOB} = \underline{COD}$ (vertically oposite)

$$\underline{AOD} = \underline{BOC}$$
 (vertically opposite)

4. In the $\triangle OAB$

OA = OB = Radius of the circle. In an Isocelleous the angles which are opposite to the equal sides are equal.

Hence = $|\underline{O}AB| = |\underline{O}BA|$

SECTION - II

R.T.P.: |AOB = |COD|

8. For picking a number (Natural Number) Randomly

Upto 10*r*, the possible out comes

=

Probability of an event $P(E) = \frac{\text{No. of required out comes}}{\text{Total out comes}}$

$$P(E) = \frac{4}{100} = \frac{1}{25}$$

9. Given

Weights in Kg (n)	30	35	40	45
No. of students (f)	10	14	10	6

Mean
$$= \frac{\sum f.n.}{\sum f} = \frac{1460}{40} = 36.5 kg$$

- 10. a)Given
 - $\overline{AB} \parallel \overline{CD} \parallel \overline{EF}$ an equi distance \overline{AF} is a transversal
 - $\overline{GH} \perp \overline{AB}$

GH = 4 cm AB = 4.5 cm FB = 8 cm

To find Area of \triangle GDF

In the given figure In $\triangle ABFD$ is the mid point of

 \overline{BF} . (Because all the parallel lines are at an equi distance)

Similarly G is the mid point of \overline{AF} (Since BD = DF AG = GF)

Hence G is the mid - point. \overline{BD} is the median.

Median divides the triangle into two equal areas.

 \therefore ar $\triangle ABG = ar \triangle BGF$

Similarly for $\triangle BGF \overline{GD}$ is the median.

 \therefore ar $\triangle ABG = 2$ ar $\triangle DGF$

$$ar \Delta DFG = \frac{1}{2} ar \Delta ABG$$
Area of $\Delta ABG = \frac{1}{2}$ base × height $= \frac{1}{2} \times 4.5 \times 4^2 = 9cm^2$

$$\therefore ar \Delta DGE = \frac{1}{2} \times 9 = 4.5cm^2$$
(or)
b) Area of paralleogram
$$= base \times heigh$$

$$= AB \times h$$
AB $= |x_2 - x_1| = |6 - 2| = 4$
Area $= 4 \times 3 = 12$ sq. units
Given $\overline{AB} \parallel \overline{CD}$
 \overline{CE} is a transseral
$$|\underline{DCE}|, |\underline{BEC}| = 180^{\circ} \qquad \therefore \overline{AB} \parallel \overline{CD}$$

$$\therefore (x + 2y)^{\circ} = x^{\circ} = 180^{\circ}$$

$$2(x + y)^{\circ} = 180^{\circ}$$
(Area $= 4 \times 3 = 10$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$ sq. units
(Area $= 4 \times 3 = 12$

 $\underline{AEP} + 60^{\circ} + x^{\circ} = 180^{\circ}$ $\underline{AEP} + x^{\circ} = 120^{\circ}$ (2)

Now in $\triangle APE |\underline{APE} + |\underline{PAE} + |\underline{AEP} = 180^{\circ}$

11.

У	$^{0} + 90^{0} + \underline{A}EP = 180^{0} \Rightarrow \underline{A}E$	$P = 90^\circ - y^\circ$
	$\underline{A}EP + y^0 = 90^0$	But from (1)
1	$\underline{4}EP + y^0 = x^0 + y^\phi$	
	$\underline{AEP} = x^0$	
Substintin	$\operatorname{ngin}(2) \ x^0 + x^0 = 120^0 \Longrightarrow x =$	60 ⁰
	$y^0 = 90^0 - x^0 = 90^0 - 60^0 = 3$	30^{0}

(or)

D)	Weight (kg) (x)	No.of Parcel	$f \times x$	<i>c.f.</i>
	50	25	1250	25
	65	34	2210	59
	75	38	2850	97
	90	x	90 <i>x</i>	97+ <i>x</i>
Median	110	47	5170	144+ <i>x</i>
01055	120	16	1920	160+ <i>x</i>
	(4.5			

1 \

$$(160+x)$$
 13,400 + 90x

Mean = 85 (Given)
Mean =
$$\frac{\sum f.x.}{\sum f} = \frac{13,400+90x}{160+x} = 85$$

= 13,400 + 90x = 13600 + 85x
90 x - 85x = 13,600 - 13,400 = 200
5x = 200
x = 40
Median : \therefore N is 160 + 40 = 200 even

$$Median = \left(\frac{N}{2} + 1\right)^{th} = 101^{th}$$

101th frequency is = 90

- (1)

12. In the given figure a)

' PQRS and ' ABRS

are two paralleogram on the same

base \overline{SR} .

Hence ar' PQRS = ar' ABRS

In 'ABRS $\triangle ASX$ is the triangle on the same base \overline{AS}

Hnece $ar \Delta ASX = \frac{1}{2} ar$. ' PQRS

b) In the given figure

 $\overline{CD} \perp \overline{AB}$ (perpendicular bisebol)

Given O is the centre of the circle.

 $\overline{AB} \perp \overline{CD}$

To prove : $\overline{AD}, \overline{BD}$

Construction : Join $\overline{AD}, \overline{BD}$

Proof: In $\triangle AED, \triangle BE$

 \overline{AE} , \overline{BE} (Perpendicularly bisects)

 $\overline{DE}, \overline{DE}$ (Common side)

 $|AED = |BED = 90^\circ$

under Rh.S congruency or (S.A.S) congruency

 $AED \cong BED$

under CPCT $\overline{AD} = \overline{BD}$

13. a) Consturction of trinagle - 1

Construction of circum circle - $1\frac{1}{2}$

Steps of construction : 1

b) Construction - $2\frac{1}{2}$

Steps of consruction

Draws a line segment $\overline{BC} = 5$ cm

Draw an angle $|ABC = 60^\circ$

Since $\overline{AB} + \overline{AC} = 8$ cm take BD = 8 cm

Draw an arc from B by taking 8 cm as radius.

Join \overline{CD}

Draw a perpendicular biscect to \overline{CD}

If intersect \overline{BD} at A

Join \overline{AC} our required $\triangle ABC$ obtained.

PART - B

14.	В	26.	D
15.	С	27.	А
16.	А	28.	В
17.	D	29.	D
18.	С	30.	С
19.	А	31.	D
20.	А	32.	В
21.	С	33.	В
22.	С		
23.	D		
24.	В		
25.	С		