# SUMMATIVE ASSESSMENT - III - 2016-2017 MATHEMATICS - PAPER - II <br> (English Medium) <br> PRINCIPLE OF VALUATION 

## Class: IX

## SECTION - I

1. Given the interior angles of a trinalge $=(3 x-10),(3 x+10)^{0},\left(3 x^{0}\right)$

Sum of the angles $=(3 x-10)+(3 x+10)+3 x+9 x=180^{0}$

$$
\begin{aligned}
& 9 x=180^{\circ} \\
& x=\frac{180^{\circ}}{9}=20^{\circ}
\end{aligned}
$$

$\therefore$ The angles are $=[(3 \times 20)-10],[(3 \times 20)+10],(3 \times 20)$

$$
=50^{\circ}, 70^{\circ}, 60^{\circ}
$$

2. i) Points that lies $\overline{O Y}$ on is for $x=0, y \geq 0$

The point which satisifies the condition is allowed.
ii) Points that lies on $\overline{O X}^{1}$ is $(x, y)$ for $x=0, y \leq 0$

The point which satisifies the codnition is allowed.
3. Vertically opposite angles

$$
\begin{aligned}
& \lfloor A O B=\lfloor C O D \text { (vertically oposite) } \\
& \lfloor\underline{A O D}=\lfloor\underline{B O C} \text { (vertically opposite) }
\end{aligned}
$$

4. In the $\triangle \mathrm{OAB}$
$\mathrm{OA}=\mathrm{OB}=$ Radius of the circle. In an Isocelleous the angles which are opposite to the equal sides are equal.

Hence $=\lfloor O A B=\underline{O B A}$

## SECTION - II

5. Given data $=10,15,20,25,15 x$

Arrainging in order $=10,15,15 x, 20,25$
If mode is $x$ than $x=15$
Here median is also $=15 . \quad \therefore x=15$
Sum ofscoles $=10+3(15)+20+25=10$

$$
\text { Mean }=\bar{x}=\frac{\sum x i}{n}=\frac{100}{6}=16 \frac{2}{3}
$$

6. Given $\overline{E A} \perp \overline{A B}$


$$
\begin{aligned}
& \overline{D E} \perp \overline{B E} \\
& \overline{C D} \perp \overline{B D}
\end{aligned}
$$

Area of $\mathrm{ABCDE}=$ Area of $\triangle \mathrm{ABE}$

+ Area of $\triangle \mathrm{BED}$
+ Area of $\triangle \mathrm{BDC} \quad$ Area of $\Delta^{4} \frac{1}{2} \times$ base $\times$ high
$=\frac{1}{2} A B \times A E+\frac{1}{2} B E \times D E+\frac{1}{2} B D \times C D$
$=\frac{1}{2}=4 \times 3+\frac{1}{2} 5 \times 12+\frac{1}{2} \times 13 \times 24$
$=6 \mathrm{~cm}^{2}+30 \mathrm{~cm}^{2}+156 \mathrm{~cm}^{2}=192 \mathrm{~cm}^{2}$

7. Statement : Equal cholds of a circle subtend equal angels at the center.

Given: O is the center of a circle
in which $\overline{A B}, \overline{C D}$ two
equal cholds. $\lfloor A O B,\lfloor C O D$
are the angles subtended at the center.

R.T.P. : $\lfloor A O B=\lfloor C O D$
8. For picking a number (Natural Number) Randomly Upto $10 r$, the possible out comes $=100$

Probability of an event $P(E)=\frac{\text { No. of required out comes }}{\text { Total out comes }}$

$$
P(E)=\frac{4}{100}=\frac{1}{25}
$$

9. Given

| Weights in Kg (n) | 30 | 35 | 40 | 45 |
| :---: | :---: | :---: | :---: | :---: |
| No. of students (f) | 10 | 14 | 10 | 6 |
| f. $x \quad 300$ | 490 | 400 | 270 |  |

Mean $=\frac{\sum f . n .}{\sum f}=\frac{1460}{40}=36.5 \mathrm{~kg}$
10. a)Given
$\overline{A B}\|\overline{C D}\| \overline{E F}$
an equidistance $\overline{A F}$
is a transversal
$\overline{G H} \perp \overline{A B}$
$\mathrm{GH}=4 \mathrm{~cm} \quad \mathrm{AB}=4.5 \mathrm{~cm} \quad \mathrm{FB}=8 \mathrm{~cm}$
To find Area of $\triangle$ GDF


In the given figure In $\triangle \mathrm{ABFD}$ is the mid point of
$\overline{B F}$. (Because all the parallel lines are at an equi distance)
Similarly G is the mid point of $\overline{A F}$ (Since $\mathrm{BD}=\mathrm{DFAG}=\mathrm{GF}$ )
Hence G is the mid - point. $\overline{B D}$ is the median.
Median divides the triangle into two equal areas.
$\therefore$ ar $\triangle \mathrm{ABG}=$ ar $\triangle \mathrm{BGF}$
Similarly for $\triangle \mathrm{BGF} \overline{G D}$ is the median.

$$
\therefore \text { ar } \triangle \mathrm{ABG}=2 \text { ar } \triangle \mathrm{DGF}
$$

$\operatorname{ar} \Delta \mathrm{DFG}=\frac{1}{2} \operatorname{ar} \Delta \mathrm{ABG}$
Area of $\Delta \mathrm{ABG}=\frac{1}{2}$ base $\times$ height $=\frac{1}{2} \times 4.5 \times 4^{2}=9 \mathrm{~cm}^{2}$
$\therefore$ ar $\triangle \mathrm{DGE}=\frac{1}{2} \times 9=4.5 \mathrm{~cm}^{2}$
b) Area of paralleogram

$$
\begin{aligned}
& =\text { base } \times \text { heigh } \\
& =\mathrm{AB} \times \mathrm{h}
\end{aligned}
$$

$\mathrm{AB}=\left|x_{2}-x_{1}\right|=|6-2|=4$
$\mathrm{h}=\left|y_{2}-y_{1}\right|=|5-2|=4$
Area $=4 \times 3=12$ sq. units
11. Given $\overrightarrow{A B} \| \overrightarrow{C D}$

$\overrightarrow{C E}$ is a transseral
$\lfloor D C E,\lfloor B E C$ are (Interior angles on one side of a transversal)

$$
\begin{gather*}
\left\lfloor\underline{D C E} \mid+\left\lfloor\underline{B E C}=180^{\circ} \quad \therefore \overrightarrow{A B}| | \overrightarrow{C D}\right.\right. \\
\therefore(x+2 y)^{0}=x^{0}=180^{\circ} \\
2(x+y)^{0}=180^{\circ} \\
(x+y)^{0}=90^{\circ}
\end{gather*}
$$


$\left\lfloor A E P+\left\lfloor P E C+\left\lfloor C E B+180^{\circ}\right.\right.\right.$ (Angles an one side of a line)

$$
\begin{array}{r}
\left\lfloor A E P+60^{\circ}+x^{0}=180^{\circ}\right. \\
\left\lfloor A E P+x^{0}=120^{\circ}\right. \tag{2}
\end{array}
$$

Now in $\triangle \mathrm{APE}\left\lfloor A P E+\underline{P} A E+\left\lfloor A E P=180^{\circ}\right.\right.$

$$
\begin{aligned}
& y^{0}+90^{\circ}+\left\lfloor A E P=180^{\circ} \Rightarrow\left\lfloor A E P=90^{\circ}-y^{0}\right.\right. \\
& \quad\left\lfloor A E P+y^{0}=90^{\circ} \quad \text { But from }(1)\right. \\
& \left\lfloor A E P+y^{0}=x^{0}+y^{\phi}\right. \\
& \therefore\left\lfloor A E P=x^{0}\right.
\end{aligned}
$$

Substinting in (2) $x^{0}+x^{0}=120^{\circ} \Rightarrow x=60^{\circ}$

$$
\therefore y^{0}=90^{\circ}-x^{0}=90^{\circ}-60^{\circ}=30^{\circ}
$$

| b) | (or) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Weight (kg) (x) | No.of Parcel (f) | $f \times x$ | c.f. | $\begin{aligned} & \text { Mean }=85 \text { (Given) } \\ & \text { Mean }=\frac{\sum f . x .}{\sum f}=\frac{13,400+90 x}{160+r}=85 \end{aligned}$ |
| Median class | 50 | 25 | 1250 | 25 |  |
|  | 65 | 34 | 2210 | 59 | $=13,400+90 x=13600+85 x$ |
|  | 75 | 38 | 2850 | 97 | $90 x-85 x=13,600-13,400=200$ |
|  | 90 |  | 90x | 97+x | $5 x=200$ |
|  | 110 | 47 | 5170 | $144+x$ | $x=40$ |
|  | 120 | 16 | 1920 | $160+x$ | Median: $\therefore \mathrm{N}$ is $160+40=200$ even |
| $(160+x) 13,400+90 x$ |  |  |  |  | Median $=\left(\frac{N}{2}+1\right)^{\text {th }}=101^{\text {th }}$ |
|  |  |  |  |  | 101th frequency is $=90$ |
|  |  |  |  |  | Median $=90$ |

12. a) Inthegiven figure

## ${ }^{\prime}$ PQRS and ${ }^{\prime}$ ABRS

are two paralleogram on the same
base $\overline{S R}$.
Hence $a r^{\prime}$ PQRS $=a r^{\prime} \operatorname{ABRS}$


In ' $\mathrm{ABRS} \triangle \mathrm{ASX}$ is the triangle on the same base $\overline{A S}$
Hnece ar $\triangle \mathrm{ASX}=\frac{1}{2}$ ar. ${ }^{\prime} \mathrm{PQRS}$
(or)
b) In the given figure
$\overline{C D} \perp \overline{A B}$ (perpendicular bisebol)
Given O is the centre of the circle.
$\overline{A B} \perp \overline{C D}$
To prove : $\overline{A D}, \overline{B D}$
Construction: Join $\overline{A D}, \overline{B D}$


Proof: In $\triangle \mathrm{AED}, \triangle \mathrm{BE}$

$$
\begin{aligned}
& \overline{A E}, \overline{B E} \text { (Perpendicularly bisects) } \\
& \overline{D E}, \overline{D E} \text { (Common side) } \\
& \left\lfloor A E D=\left\lfloor B E D=90^{\circ}\right.\right.
\end{aligned}
$$

under Rh.S congruency or (S.A.S) congruency

$$
A E D \cong B E D
$$

under CPCT $\overline{A D}=\overline{B D}$
13. a) Consturction of trinagle - 1

Construction of circum circle - $11 / 2$
Steps of construction: 1
b) Construction- $2^{1 / 2}$


Steps of consruction
Draws a line segment $\overline{B C}=5 \mathrm{~cm}$
Draw an angle $\left\lfloor A B C=60^{\circ}\right.$
Since $\overline{A B}+\overline{A C}=8 \mathrm{~cm}$ take $\mathrm{BD}=8 \mathrm{~cm}$
Draw an arc from $B$ by taking 8 cm as radius.
Join $\overline{C D}$

Draw a perpendicular biscect to $\overline{C D}$
If intersect $\overline{B D}$ at A
Join $\overline{A C}$ our required $\triangle \mathrm{ABC}$ obtained.

## PART - B

14. B
15. C
16. A
17. D
18. C
19. A
20. A
21. C
22. C
23. D
24. B
25. C
