SUMMATIVE ASSESSMENT - III - 2016-2017 MATHEMATICS

(English Medium)
 PRINCIPLE OF VALUATION

Class: VIII

SECTION - I

1. Given $=\frac{(-4)^{-5}}{(-4)^{-3} \times(-4)^{-2}}$

$$
\because a^{m} \times a^{n}=a^{m+n}
$$

$$
=\frac{(-4)^{-5}}{(-4)^{-3-2} \times(-4)^{-2}}
$$

$$
\because \frac{a^{m}}{a^{n}}=a^{m-n}
$$

$$
=(-4)^{-5-(-5)}=(-4)^{-5+5}=(-4)^{0}
$$

$$
\because a^{0}=1
$$

$$
=1
$$

2. a) Given $=0.0000456$

Standard form $=4.56 \times 10^{-5}$
b) Given $=0.000437 \times 10^{-3}$

Standard form of $0.000437=4.37 \times 10^{-4}$
Now the standard form of $0.000437 \times 10^{-3}=4.37 \times 10^{-4} \times 10^{-3}=4.37 \times 10^{-7}$
3)

4) Open ended Question

Let the numbers be $=18,19,20$ (student may write any three consecuties)
Sum of the numbers $=18+19+20=57$
Mean $=x=\frac{\sum x_{i}}{\sum x}=\frac{57}{3}=19$
yes 19 is one of the number taken.

SECTION - II

5. Given $=4 . \overline{7} \quad[$ Here in the given 'period' is $=1]$

Let $x=4 . \overline{7}=4.7777 \ldots$ $10 x=47.777 \ldots$
$x=4.777$
$9 x=43.000 \quad$ (By subtracting)
$x=\frac{43}{9}=\frac{p}{q} \quad$ (as per the form)
Now $\frac{p-q}{p+q}=\frac{43-9}{43+9}=\frac{34^{17}}{52^{26}}=\frac{17}{26}$
6. Given length of the arc of a sector $=7 \frac{1}{3} \mathrm{~cm}=\frac{22}{3} \mathrm{~cm}$

$$
\text { Radius }=7 \mathrm{~cm}
$$

Area of the sechr $=\frac{l r}{2}$

$$
\text { Area }=\frac{22^{11}}{3} \times \frac{7}{X_{1}}=\frac{77}{3} \mathrm{~cm} 2=25 \frac{2}{3} \mathrm{~cm}^{2}
$$

7. An equation is called an identify if it is satisfied by any value that replaces its variable (s) is called an algebraic identify.

While writing we must use $=($ Identically equal to $)$ in between L.H.S. and R.H.S.

$$
\begin{array}{r}
\text { Example 1. }(a+b)^{2}=a^{2}+2 a b+b^{2} \\
\text { 2. }(a+b)(a-b)=a^{2}-b^{2}
\end{array}
$$

8. For a pyramid whose base is a pentagon

No. of faces (F) $=6$
No. of verticies $(V)=6$
No. of Edges $(\mathrm{E})=10$
Euler's relation $\mathrm{F}+\mathrm{V}=\mathrm{E}+2$

$$
\begin{array}{r}
6+6=10+2 \\
12=12
\end{array}
$$

9. Given : $15,12,18,15,18, x, y$

Writing in an order if x is median $\}: 12,15,15, x, 18,18, y$ (or) $12,15,15, x, y, 18,18$
For writing the values of x and y such that $15<x<y$
Writing in an order if 15 is median $\}: x, 12,15,15,18,18 y$ (or)

$$
12, x, 15,15,18,18, y
$$

For writing the values of x and y such that $x<15<y$.
10. a) Here no. of workers are inversely proportional to working hours.

Similalray no. of workers are also inversely proportional to working days.

Workers	Working hours	Working days
30	6	24
x	8	20
$30: x$	$6: 8$	$24: 20$

We know that no. of workers $\alpha \frac{1}{\text { working }}$ hours per day
$30: x=8: 6$
Similarly we know that
No. of wokers $\alpha \frac{1}{\text { working hours per day }}$

$$
30: x=20: 24
$$

$\therefore 30: x=$ compound raito of $8: 6$ and $20: 24$

$$
30: x=8 \times 20: 6 \times 24
$$

$$
\therefore x=30^{3} \times \frac{6^{3} \times 24^{3}}{8 \times 2 \theta_{3}}=27
$$

(or)
b) Area of field ABCDE
$=$ Area of $\triangle A B X_{1}+$
Area of $\triangle \mathrm{CX}_{2} \mathrm{D}+$ Area of $\triangle \mathrm{AED}$
Area of a trinalge $=\frac{1}{2}$ base \times height

Area of trapezieum $=\frac{1}{2}$ height (sum of parallel sides)
Area of $\triangle \mathrm{ABX}_{1}=\frac{1}{2} \mathrm{AX}_{1} \times \mathrm{BX}_{1} \quad \mathrm{AX}_{1}=30, \mathrm{BX}_{1}=30$

$$
=\frac{1}{2} \times 30 \times 30=\frac{900}{2}=450 \mathrm{~m}^{2} .
$$

Area of trapezieum $=\frac{1}{2} \mathrm{X}_{1} \mathrm{X}_{2}\left(\mathrm{BX}_{1}+\mathrm{CX}_{2}\right) \quad \mathrm{X}_{1} \mathrm{X}_{2}=\mathrm{AX}_{2}-\mathrm{AX1}=60-30=30$

$$
\begin{aligned}
& =\frac{1}{2} \times 30(30+50) \quad \mathrm{BX}_{1}=30 \quad \mathrm{CX}_{2}=50 \\
& =\frac{1}{z} \times 30 \times 80^{40}=120 \mathrm{~m}^{2}
\end{aligned}
$$

Area of $\mathrm{CX}_{2} \mathrm{D}=\frac{1}{2} \mathrm{CX}_{2} \times \mathrm{DX}_{2}$

$$
=\frac{1}{2} \times 50 \times 8 \theta^{40}=2000 \mathrm{~m}^{2}
$$

Area of $\triangle \mathrm{ADE}=\frac{1}{2} \mathrm{AD} \times \mathrm{EX}_{3}=\frac{1}{2} \times 140^{70} \times 50$
Total Area of the filed $=450 \mathrm{~m}^{2}+1200 \mathrm{~m}^{2}+2000 \mathrm{~m}^{2}+3500 \mathrm{~m}^{2}$

$$
=7150 \mathrm{~m}^{2}
$$

11. a) Given Area of square filed $=5184 \mathrm{~m}^{2}$

Area of a square $=$ side \times side $=S^{2}$	7	5184	72
$S^{2}=5184 \mathrm{~m}^{2}$		49	
	$=\sqrt{5184}$		284
$=72 \mathrm{mt}$.		284	

Length of the rectangle $=72 \mathrm{mt}$.

$$
\text { Breadth } \quad=54 \mathrm{mt} . \quad(\therefore \text { Area of rectangle }=l \times b)
$$

Area of the rectangle $=72 \times 54$

$$
=3,888 \mathrm{~m}^{2}
$$

b) $42\left(a^{4}-13 a^{3}+36 a^{2}\right) \div 7 a(a-4)$

$$
=\frac{42 a^{2}\left(a^{2}-13 a+36\right)}{7 a(a-4)}=\frac{42^{6}}{\not X} \times a^{2-1} \frac{\left(a^{2}-13 a+36\right)}{a-4}
$$

Factorizing $\mathrm{a}^{2}-13 a+36$

$$
\begin{aligned}
& =\frac{6 a\left(a^{2}-13 a+36\right)}{(a-4)} \\
\therefore & \frac{6 a\left(a^{2}-13 a+36\right)}{(a-4)}=\frac{6 a(a-a)(a-4)^{1}}{(t-4)_{1}} \\
= & 6 a(a-a)
\end{aligned}
$$

Checking: 6a (a-9) (7a) (a-4)
by using Identify

$$
\begin{aligned}
& x 2-(a+b) x+a b=(x-a)(x-b) \\
& a^{2}-13 a+36=a^{2}-(9+4) a+9 \times 4 \\
& \quad=(a-9)(a-4) \\
& =42 a^{2}\left(a^{2}-13 a+36\right) \\
& \quad=42\left(a^{4}-13 a^{3}+36 a^{2}\right)
\end{aligned}
$$

12. a) Given Principlal $(P)=₹ 10,000$

Rate $\quad(\mathrm{R})=10 \%$ per annum.
Time $\quad(T)=2$ years
Simple Internet $\mathrm{I}=\frac{P T R}{100}$

$$
=\frac{10,0001^{100} \times 2 \times 10}{100_{1}}=₹ 2000
$$

Componund Interest: $\mathrm{A}-\mathrm{P}=₹ 12100-₹ 10000=₹ 2100$
Difference $=$ C.I. - Simple Interest $=₹ 2100-₹ 2000=₹ 100$
Simple interest is the letter option for borrower.
Compound interest is the letter option for lender.
b) Given measurement of cuboid Length $=15 \mathrm{~cm}$

Breadth $=12 \mathrm{~cm}$
Height $=6 \mathrm{~cm}$
Two arrangements are like this
Case 1 Keeping one on another without changing its length length, Breadth, Height of these combination $=15 \mathrm{~cm}, 12 \mathrm{~cm}, 12 \mathrm{~cm}, 15 \mathrm{~cm}$

Total surface Area $=2(l b+l h+l h)$

$$
\begin{aligned}
& =(2(15 \times 12+12 \times 12+15 \times 12)=2 \times 12(15+12+15) \\
& =2 \times 12 \times 42=24342=1008 \mathrm{~cm}^{2}
\end{aligned}
$$

Case $=2$
Keeping side by side without changing its length
Measurement of the combination
Length, breadth and Height $=15 \mathrm{~cm}, 24, \mathrm{~cm}, 6 \mathrm{~cm}$
Total surface Area $=2(15 \times 24+24 \times 6+15 \times 6)$

$$
\begin{aligned}
& =2(360+144+90) \\
& =2(594)=1188 \mathrm{~cm}^{2}
\end{aligned}
$$

So case 1 is letter for packing.
13.

Clan internals	Frequen- cies	Mid values	Points
$10-20$	5	15	$(15,5)$
$20-30$	9	25	$(25,9)$
$30-40$	16	35	$(35,16)$
$40-50$	11	45	$(45,11)$
$50-60$	3	55	$(55,3)$

By taking Mid-values on X -asis, frequency on Y -axis plotting the points and joining them with scale

b) For drawing rough diagaram and labling

For construction of a quardrilaterla
Steps of construction

1) Draw $\overline{Q R}$ with 5.2 cm length.

2) Draw an angle 120° at Q and plot p at a distance of 4.5 cm on the angular line.
3) Draw an arc with radius 4 cm from p and interest the arc with another arc from R at a distance of 5.5 cm .
4) The inter secting point is S.
5) Join $\overline{P S}, \overline{R S}$ our required quadrilateral $P Q R S$ obtained.
PART - B
14. B
15. C
16. A
17. D
18. C
19. A
20. A
21. C
22. C
23. D
24. B
25. B
26. D
27. A
28. D
29. B
30. D
31. A
32. D
33. A
.
